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Abstract— Interest in dense sensor networks due to falling
price and reduced size has motivated research in sensor location
in recent years. To our knowledge, the algorithm which achieves
the best performance in sensor location solves an optimization
program by relaxing the quadratic geometrical constraints of
the network to render the program convex. In recent work we
proposed solving the same program, however by applying convex
geometrical constraints directly, necessitating no relaxation of the
constraints and in turn ensuring a tighter solution. This paper
proposes a distributed version of our algorithm which achieves
the same globally optimal objective function as the decentralized
version. We conduct extensive experimentation to substantiate the
robustness of our algorithm even in the presence of high levels
of noise, and report the messaging overhead for convergence.

Index Terms— Simplex method, Primal-dual method

I. INTRODUCTION

The falling price and reduced size of sensors in recent years
have fueled the deployability of dense networks to monitor and
relay environmental properties such as temperature, moisture,
and light [1]. The ability to self-organize and find their loca-
tions autonomously and with high accuracy proves particularly
useful in military and public safety operations. In dense
networks, multilateration can render good location accuracy
despite significant errors in range estimates between sensors.
This has launched a research area known as sensor location
which seeks to process potentially enormous quantities of data
collectively to achieve optimal results. Most practical systems
require local distributed processing to cope with dynamic links
or nodes in motion to maintain a network updated; alterna-
tively relaying information across a large network sanctions
the centralized processing of obsolete data, limiting scalability.

A recent paper on sensor location [2] provides an exhaustive
survey of the available techniques for sensor location [3], [4],
[6], [5]. To our knowledge, the two algorithms achieving the
best performance in sensor location formulate a program with
quadratic constraints to minimize a linear objective function
[2], [7]. Since some of the constraints are non-convex, the
papers differ primarily in their relaxation approaches to render
the problem convex. The solution provided by Biswas et al.
has greater applicability and yields better results than the
one by Doherty et al. In recent work [8], we formulated a
novel problem following their same approach, maintaining the
efficiency of convex optimization, however by applying linear
triangle inequality constraints as opposed to quadratic ones.

This renders the problem automatically convex, necessitating
no relaxation of the constraints and so guaranteeing a tighter
solution, as confirmed through simulation.

This paper proposes a distributed algorithm for sensor lo-
cation which converges to the optimal solution to the problem
defined in [8]. Section II states this problem formally. The
primal-dual method explained in Section III claims a key
advantage over the conventional simplex method to solving the
problem in a decentralized fashion. Exploiting this advantage
leads to our distributed version of the primal-dual method
described in Section IV. We demonstrate the steps of this
distributed algorithm through a simple example network in
Section V. An extensive number of challenging tests condi-
tions are reported in Section VI to substantiate the robustness
of our algorithm to high levels of noise in comparison to the
algorithm proposed by Biswas. We also report the messaging
overhead of the algorithm. The last section provides conclu-
sions and directions for further research.

II. PRELIMINARIES

Consider a network with two types of nodes: nA anchor
nodes (or anchors) with known location and nS sensor nodes
(or sensors) with unknown location, for a total of n = nA +
nS nodes. For simplicity, let the nodes lie on a plane such
that node i has location xi ∈ R2 indexed through i, i =
1 . . . nA for the anchors and i = nA + 1 . . . n for the sensors.
The set N contains all pairs of nodes between which a link
exists: (i, j), i < j; ||xi − xj || < R, where || · || denotes the
Euclidean distance and the network parameter R is known as
the radio range. The set M contains all triplets of nodes which
form a triangle in the network: (i, j, k), (i, j) ∈ N ; (j, k) ∈
N ; (i, k) ∈ N .

Neighboring nodes i and j measure the link distance d̂ij

between them through received-signal-strength or time-of-
arrival techniques [9]. Given the locations of the anchor nodes
and the measured distances between neighboring nodes in the
network, this paper considers the following problem to solve
for the locations of the sensors:



min
∑

(i,j)∈N

|αij |

s.t.
dij + djk ≥ dik

dij + dik ≥ djk

djk + dik ≥ dij






, ∀(i, j, k) ∈ M

(1)

where dij = d̂ij + αij .
The problem minimizes the sum of the absolute residuals

αij between the measured distances d̂ij and the estimated
distances dij such that the latter conform to requisite geo-
metrical constraints. Using triangle inequality constraints as
opposed to quadratic constraints [2], [7] ensures the convexity
of the problem without relaxing any of the original geometrical
constraints. Rewriting the problem in standard form removes
the absolute values and introduces bounding constraints:

min
∑

(i,j)∈N

α+
ij + α−

ij

s.t.
dij + djk ≥ dik

dij + dik ≥ djk

djk + dik ≥ dij






, ∀(i, j, k) ∈ M

α+
ij ≥ 0

α−

ij ≥ 0

}

, ∀(i, j) ∈ N

(2)

where αij = α+
ij−α−

ij . The solution to the problem above does
not directly yield the sensor locations xi, i = nA + 1...n, but
only the values of the residuals of the link distances. Hence the
complete algorithm requires aposteriori location propagation
described in [8] to furnish the locations of the sensors from
the residuals.

Theorem: If any one of the three inequality constraints of a
triangle is bound, then the other two are feasible.
Proof: Assume without loss of generality that the first inequal-
ity constraint is bound:

dij + djk = dik ⇒

{
−dij + dik = djk

−djk + dik = dij
,

but
{

dij + dik ≥ −dij + dik

djk + dik ≥ −djk + dik
since dij , djk ≥ 0,

so
{

dij + dik ≥ djk

djk + dik ≥ dij
. 2

(3)

III. THE PRIMAL-DUAL METHOD

A. The primal problem

We denote the linear program (2) as the primal problem.
Rewriting the primal in canonical form appears as

min
∑

(i,j)∈N

α+
ij +α−

ij

s.t.
a1

ij,k(α+
ij -α−

ij)+a1
jk,i(α

+
jk -α−

jk)+a1
ik,j(α

+
ik -α−

ik) -α1
ijk = b1

ijk

a2
ij,k(α+

ij -α−

ij)+a2
jk,i(α

+
jk -α−

jk)+a2
ik,j(α

+
ik -α−

ik) -α2
ijk = b2

ijk

a3
ij,k(α+

ij -α−

ij)+a3
jk,i(α

+
jk -α−

jk)+a3
ik,j(α

+
ik -α−

ik) -α3
ijk = b3

ijk






,

∀(i, j, k) ∈ M

α+
ij ≥ 0

α−

ij ≥ 0

}

, ∀(i, j) ∈ N

(4)
where





a1
ij,k a1

jk,i a1
ik,j

a2
ij,k a2

jk,i a2
ik,j

a3
ij,k a3

jk,i a3
ik,j



=





1 1 -1
1 -1 1

-1 1 1



 ,





b1
ijk

b2
ijk

b3
ijk



=





-1 -1 1
-1 1 -1
1 -1 -1









d̂ij

d̂jk

d̂ik



 ,

α+
ij , α

−

ij are the 2|N | primal decision variables, and
α1

ijk , α2
ijk , α3

ijk are the 3|M | primal slack variables.
A basic solution to the primal problem contains exactly

3|M | nonzero (basic) variables and 2|N | zero (nonbasic)
variables for the nongenerate case which assumes linear inde-
pendence of all constraints in (4). Since the optimal solution
is basic [10], the simplex method pivots between basic feasible
solutions of the system to find it. A pivot consists of raising
an entering variable in the nonbasic set from zero that will
improve the objective function. The entering variable can rise
only a certain amount until a blocking variable in the basic
set reduces to zero; hence the entering variable becomes basic
and the blocking variable nonbasic at another basic feasible
solution of the system. Determining this amount necessitates
global knowledge of the values of all the basic variables,
such that no variable loses feasibility and exactly 2|N | of
them equal zero throughout the pivots. Hence the simplex
method does not lend to distributed processing. Interior-point
methods are suited for centralized computing even more than
the simplex method, requiring the inversion of large sparse
symmetric matrices [11].

B. The dual problem
Each primal linear program has a unique dual linear pro-

gram. The dual problem to (4) appears as [12]:

max
∑

(i,j,k)∈M

b1
ijkβ1

ijk +b2
ijkβ2

ijk +b3
ijkβ3

ijk

s.t.
α+

ij:

α−

ij:

∑

k, (i,j,k)∈M

a1
ij,kβ1

ijk +a2
ij,kβ2

ijk +a3
ij,kβ3

ijk +β+
ij = 1

∑

k, (i,j,k)∈M

-a1
ij,kβ1

ijk -a2
ij,kβ2

ijk -a3
ij,kβ3

ijk +β−

ij = 1







,

∀(i, j) ∈ N

α1
ijk:

α2
ijk:

α3
ijk:

β1
ijk ≥ 0

β2
ijk ≥ 0

β3
ijk ≥ 0






, ∀(i, j, k) ∈ M

(5)



where β1
ijk , β2

ijk , β3
ijk are the dual decision variables and

β+
ij , β

−

ij are the dual slack variables. As indicated, each primal
variable has a corresponding dual constraint.

The Complementary Slackness Theorem [10] states that any
feasible primal and dual solutions are optimal if the following
complementary slackness conditions hold:

(a) αu
ijk = 0 ⇒ βu

ijk ≥ 0

(b) αu
ijk > 0 ⇒ βu

ijk = 0

}

,

{
∀(i, j, k) ∈ M

∀u ∈ {1, 2, 3}
(c) αv

ij = 0 ⇒ βv
ij ≥ 0

(d) αv
ij > 0 ⇒ βv

ij = 0

}

,

{
∀(i, j) ∈ N

∀v ∈ {+ , -}
(6)

Rather than solve the primal problem through the simplex
method, we formulate a distributed version of the primal-dual
method. The key advantage of the latter relaxes the condition
that a primal solution be basic. Our algorithm proceeds in
the follow manner: first a link in the network finds a local
feasible primal solution (not necessarily basic) such that all
incident triangles meet the triangle inequality constraints. Then
the link applies the complementary slackness conditions given
through this primal solution, defining the local restricted dual
problem. If the dual solution to the restricted problem is also
feasible, then the local primal solution is optimal through
the Complementary Slackness Theorem; otherwise the primal
solution is modified. Once all the links attain compatible
locally compatible optimal solutions, the network achieves the
globally optimal solution. Dantzig treats a full discussion on
the primal-dual method [11].

IV. DISTRIBUTED LOCATION

A. Network organization
The nodes in the network transmit asynchronously. If node

i wakes up after node j, then ni manages the link `ij . The
link manager maintains the information on `ij : the measured
distance d̂ij and the residual αij initialized to zero. Fig. 1a
illustrates an example network with three nodes ni, nj , nk,
where nk woke up first and nj second, assigning to nj

manager of `jk . When ni wakes up subsequently, it broadcasts
a HELLO message containing its ID#: i. In Fig. 1b, nodes
nj and nk respond with their ID#s; since nj serves as link
manager, it also broadcasts the information on the links it
manages. In receiving the messages from nj and nk in Fig.
1c, ni becomes manager of `ij and `ik and estimates d̂ij and
d̂ik ; the two-way message exchange allows ni to measure these
distances asynchronously [13]. As manager, ni then broadcasts
the information on the links it manages. Now both managers in
Fig. 1d have access to information on all three links of 4ijk .
While we refer to the links as the processing centers for the
distributed algorithm in the sequel, the actual processing of
course takes place at the link managers.

B. A feasible primal solution
Denote a triangle 4ijk as feasible if it meets all three of

its triangle inequality constraints: αu
ijk ≥ 0, ∀u ∈ {1, 2, 3}.
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Fig. 1. Transmitted messages in network organization.

Suppose that a link `ij changes value, rendering one of its
incident triangles infeasible: αu

ijk < 0, for u, k. Proof (3)
shows that if any one of the constraints is bound, then the other
two are feasible; so by setting αu

ijk = 0, `ij restores feasibility
to 4ijk . Since the value of `ij was just changed, it remains the
same; rather the link selects one of the other two links on the
triangle (`jk or `ik) to set the value of αu

ijk to zero, say `jk.
Consider modifying αv

jk such that α′

jk = αjk +
(

∂αv
jk

∂αu
ijk

)

δαu
ijk ,

where δαu
ijk = −αu

ijk represents the necessary change in αu
ijk

to render the violated constraint feasible. The partial

( ∂αv
jk

∂αu
ijk

)

αij ,αik

=
1

vau
jk,i

(7)

while maintaining the value of the links `ij and `ik constant
is computed by rewriting the primal constraint u in (4) as

au
ij,k (α+

ij -α−

ij)
︸ ︷︷ ︸

αij

+au
jk,i

vαv
jk

︷ ︸︸ ︷

(α+
jk -α−

jk) +au
ik,j (α+

ik -α−

ik)
︸ ︷︷ ︸

αik

-αu
ijk = bu

ijk .

(8)
Note that αv

jk > 0 implies α -v
jk = 0. The program below

summarizes the local pivot:



Pivot I: Set αu
ijk = 0 by modifying αv

jk

α′

jk = αjk +
(

∂αv
jk

∂αu
ijk

)

δαu
ijk

(
∂αv

jk

∂αu
ijk

)

αij ,αik

= 1
vau

jk,i

δαu
ijk = −αu

ijk

(9)

In restoring feasibility to 4ijk , `jk may in turn render a
neighboring triangle 4jkl infeasible, analagous to the change
in `ij which rendered 4ijk infeasible in the previous step.
Through this mechanism infeasibility propagates through the
network between triangles, leaving those in its path feasible,
and so obtaining a feasible primal solution locally at each
step until termination at a certain triangle. In the worst case,
propagation terminates at the edge of the network where `jk

has no neighboring 4jkl. Section IV − C describes how to
select `jk optimally.
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Fig. 2. Propagation in finding a feasible primal solution.

The portion of a network in Fig. 2a consists of four
feasible triangles (shaded) with the estimated distances d = d̂

displayed on each link. Let d12 decrease to 1, rendering 4123

infeasible. The infeasibility then propagates along the path
indicated by the dashed arrow in Fig. 2b: d23 decreases to
3, restoring feasibility to 4123, but rendering 4234 infeasible;
d24 decreases to 7, restoring feasibility to 4234 while main-
taining 4245 feasible. The propagation terminates at 4245

with all four triangles newly feasible.

C. The restricted dual problem
1) Defining and solving the restricted dual problem: We

say that a link `ij has a local feasible primal solution if all
its incident triangles 4ijk , ∀k, (i, j, k) ∈ M are feasible.
Once a link obtains a local feasible primal solution, it applies
the complementary slackness conditions which define the local
restricted dual: every bound primal constraint αu

ijk = 0 admits
one dual decision variable (unknown) βu

ijk ≥ 0 to the re-
stricted problem (6a), while setting the remaining dual decision
variables to zero (6b); every nonzero primal decision variable
αv

ij > 0 admits one bound dual constraint (equation) βv
ij = 0

(6d), while unbounding the remaining dual constraints (6c).
As any solution to a nondegenerate linear system contains at
least the same number of unknowns as equations, any solution
to the nondegenerate primal system in (4) contains at least
the same number of nonzero primal decision variables as the
number of bound primal constraints. So due to complementary
slackness, the restricted dual contains no more unknowns than
equations, allowing to solve for the unknowns through simple
substitution.
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Fig. 3. Propagation in solving the restricted dual problem.

Fig. 3 graphically represents the restricted dual problem
corresponding to the feasible primal solution in Fig. 2b. Each
of the three darkly shaded triangles has one bound primal
constraint, admitting one unknown per triangle to the dual:
β2

123 (d12 + d13 = d23) at 4123, β1
234 (d23 + d34 = d24)

at 4234, and β2
245 (d24 + d25 = d45) at 4245; each of the

three boldfaced links with nonzero residuals (α−

12 = 3, α−

23 =
2, α−

24 = 2) admits one equation per link to the dual from
(5): (−β2

123 = 1) at `12, (β2
123 − β1

234 = 1) at `23, and
(β1

234 − β2
245 = 1) at `24. Although `23 and `24 cannot solve

for their two unknowns, `12 can solve for its single unknown
β1

123 = −1, and then propagates the value to the other two
links of 4123; now knowing the value of β2

123, l23 solves
for its single remaining unknown β1

234 = 2 and propagates
the value to the other two links of 4234; now knowing the
value of β1

234, `24 solves for its single remaining unknown
β2

245 = 1 and propagates the value to the other two links
of 4245. Paralleling the primal solution, the dual solution is
also found through propagation. The dashed arrow in Fig. 3
indicates the direction of propagation.

2) Modifying the primal solution towards optimality: If the
solution to the restricted dual is feasible (i.e. all the decision
and slack variables are greater than or equal to zero), then the
primal solution is optimal. Otherwise it can be shown [11] that
setting an infeasible dual variable to zero improves the primal
objective, provided that the nonzero feasible dual variables
remain admitted to the restricted dual problem.

If the restricted dual solution includes an infeasible decision
variable βu

ijk < 0, then raising its corresponding primal slack
variable αu

ijk from zero sets βu
ijk = 0 through complementary

slackness. However entering αu
ijk lowers a local blocking



variable αũ
ijk > 0, ũ 6= u,

∂αu
ijk

∂αũ
ijk

= −1; conversely, reducing
αũ

ijk to zero through Pivot I (9) raises αu
ijk . The partial

(
∂αu

ijk

∂αũ
ijk

)

αij ,αik

=

(
∂αv

jk

∂αũ
ijk

)(
∂αu

ijk

∂αv
jk

)

=
au

jk,i

aũ
jk,i

(10)

is computed through (7). Note that Pivot I results in αv
jk > 0,

and in turn sets βv
jk = 0 through complementary slackness;

so if βv
jk > 0 before the pivot, the pivot removes a nonzero

feasible dual variable from the restricted dual. Select αv
jk such

that βv
jk ≤ 0.

If the restricted dual solution includes an infeasible slack
variable βv

ij < 0, then raising its corresponding primal
decision variable αv

ij from zero sets βv
ij = 0 through com-

plementary slackness. However entering αv
ij lowers a local

blocking variable αṽ
jk > 0,

∂αv
ij

∂αṽ
ij

= −1; conversely, reducing

αṽ
jk to zero through Pivot II below raises αv

ij . The partial ∂αv
ij

∂αṽ
jk

is computed through (8).

Pivot II: Set αṽ
jk = 0 by raising αv

ij

α′

ij = αij +
(

∂αv
ij

∂αṽ
jk

)

δαṽ
jk ,

(
∂αv

ij

∂αṽ
jk

)

αik,αu
ijk

=0
= −

ṽau
jk,i

vau
ij,k

,

δαṽ
jk = −αṽ

jk

(11)

Note that Pivot II affects the value of αu
ijk , ∀u ∈ {1, 2, 3};

so if βu
ijk > 0 before the pivot, maintain αu

ijk = 0 such that
the nonzero feasible dual variable remains in the restricted
problem.

Recall in Section IV-B that the initial primal feasible solu-
tion is found in the absence of any dual restrictions, and so
the arbitrary selection of the link to modify in Pivot I may
lead to a sub-optimal solution. When modifying the primal
solution towards optimality, the local pivot may affect the
primal feasibility of a non-incident triangle on the link. And so
another link on that triangle maneuvers to restore its feasibility
through Pivot I, but now using the local dual restrictions
to decide which one. The new primal feasible solution of
that triangle in turn generates other dual restrictions local to
the selected link. As the pivots continue, the global primal
problem becomes more and more restricted by the local duals
until achieving global optimality. An example provided in the
following section substantiates these ideas.

D. Location propagation
The estimated distances computed through (4) yield the

desired sensor locations through location propagation [14].
The anchor nodes propagate their locations to the sensor
nodes in a distributed fashion: if two anchor nodes share a
neighboring sensor node, the sensor location can be deter-
mined from the two anchor locations coupled with the two
estimated distances between the anchors and the sensor. Once

the sensor location is known, it serves with another known
sensor (or anchor) to determine the location of an unknown
sensor neighboring the two. Fig. 4 displays two anchor nodes
(shaded) and four sensor nodes. Anchors n1 and n2 propagate
their locations to unknown sensor n3; anchor n2 and now
known sensor n3 propagate their locations to unknown sensor
n4, anchor n2 and now known sensor n4 propagate their
locations to unknown sensor n5, and known sensor n3 and
known sensor n4 propagate their locations to unknown sensor
n6. The location propagation is embedded with the primal-
dual pivots in our distributed location algorithm. The details
as described in [8] and are omitted for space reasons.
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Fig. 4. Propagation in determining the sensor locations.

V. EXAMPLE NETWORK

Consider the example network in Fig. 0 of Table I with
four nodes and five links. The measured distances d̂ appear
on each link. Table I displays the coefficients of the primal
problem corresponding to this example network in A and
b. The blank slots indicate zeros and are left so to reduce
clutter. As the nodes wake up asynchronously, assume that
links `12 and `34 are the last two established, completing the
triangles 4123 and 4234 respectively. Note that 4123 and
4234 are initially infeasible with α1

123 = −2 and α3
134 = −1.

In solving the initial primal problem and in the absence of
any dual restrictions, `12 raises its value to 7(α+

12 = 6) to
restore feasibility to 4123, and distributes this value to the
other two links; likewise `34 raises its value to 2(α+

34 = 1)
to restore feasibility to 4234, and distributes this value to
the other two links. Now that each link `ij in the network
holds the primal decision variables of links `jk and `ik for
all incident triangles 4ijk , it can compute the primal slack
variables α1

ijk , α2
ijk , α3

ijk . The initial (1) primal solution with
objective 7 appears in row αv

ij(1) and column αu
ijk(1) of Table

I. The solution is indexed according to global solutions for
the sake of clarity, but as just explained, the solutions are
computed locally, distributedly, and asynchronously.

With all the triangles incident on `12 now feasible, `12

applies the complementary slackness conditions from its local
primal solution to define the corresponding local restricted
dual problem:
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12 α+

23 α−

23 α+

13 α−

13 α+

34 α−

34 α+

14 α−

14 b αu
ijk(1) βu

ijk(1) αu
ijk(2) βu

ijk(2) αu
ijk(3) βu

ijk(3)

β1
123 1 −1 1 −1 −1 1 2 4 1 1

β2
123 1 −1 −1 1 1 −1 −4 10 4 4

β3
123 −1 1 1 −1 1 −1 −6 -1 4 4

β1
234 1 −1 1 −1 −1 1 −7 8 8 6

β2
234 1 −1 −1 1 1 −1 −3 2 2 2

β3
234 −1 1 1 −1 1 −1 1 1 1 0

αv
ij(1) 6 0 1 0

βv
ij(1) 2 2 3 −1 2 2

αv
ij(2) 2 0 1 0

βv
ij(2) 2 2 3 −1 2 2

αv
ij(3) 1 0 1

βv
ij(3) 2 2 2 1 1 1 1

TABLE I
THE PRIMAL-DUAL TABLE

α3
123 = 0 ⇒ β3

123 ≥ 0

{α1
123, α

2
123} > 0 ⇒ {β1

123, β
2
123} = 0

{α−

12, α
+
23, α

−

23, α
+
13, α

−

13} = 0 ⇒ {β−

12, β
+
23, β

−

23, β
+
13, β

−

13} ≥ 0

a+
12 > 0 ⇒ β+

12 = 0

So `12 processes a single unknown (β3
123 ≥ 0) and a single

equation (−β3
123 = 1) to solve for its local restricted dual.

It solves for β3
123 = −1 and distributes this value to the

other two links of 4123. Through the same process, `34

solves for β3
234 = 1 in its restricted dual and distributes

this value to the other two links of the triangle. Now that
each link `ij in the network holds the dual decision variables
β1

ijk , β2
ijk , β3

ijk of all incident triangles 4ijk , it can compute
its slack dual variables β+

ij , β
−

ij . The initial (1) dual solution
appears in column βu

ijk(1) and row βv
ij(1) of Table I. The

table evidences the complimentary slackness structure of the
primal-dual solution, where the dual slack (decision) variable
is zero if a primal decision (slack) variable is nonzero. The
boxes indicate the admitted unknowns and equations in each
restricted dual, and Fig. 1 graphically represents the restricted
dual problem.

The initial dual solution reveals two infeasible variables
β3

123 = −1 and β−

13 = −1. Raising α3
123 or α−

13 will improve

the primal objective, provided that the nonzero feasible vari-
ables remain admitted to the restricted dual problem. Link `12

raises α3
123 through Pivot I, setting the local blocking variable

α1
123 = 4, ∂α3

123

∂α1
123

= −1 to zero by modifying the value of `12 to
3 (α+

12 = 2). Selecting to remove β+
12 = 0 from the restricted

dual problem ensures that this pivot improves the primal
objective. The second primal solution remains feasible after
Pivot I, necessitating no additional pivots to restore feasibility.
Note that the primal objective equal to 3 has indeed improved.
The second primal-dual solution appears in Table I. This dual
solution still reveals the infeasible variable β−

13 = −1. Link `13

raises α−

13 through Pivot II, setting the local blocking variable
a+
34 = 1, ∂α

−

13

∂α
+

34

= −1 to zero while maintaining α3
134 = 0 such

that β3
134 = 1 remains admitted to the restricted dual problem.

This local pivot however raises α1
123 from zero, violating a

non-local dual restriction by removing β1
123 = 1 from the

same restricted dual. Link `13 sets α1
123 back to zero through

Pivot I by modifying the value of `12 to 2 (α+
12 = 1). The

third primal-dual solution with objective 2 appears in Table I,
where all the feasible dual variables indicate the optimality of
this primal solution.



VI. EXPERIMENTAL SETUP AND RESULTS

In our previous work [8], we compared our centralized
algorithm to Biswas by conducting experiments on a network
with the same structure. The network contains 50 sensor nodes
uniformly distributed throughout a one by one unit area. The
three varying parameters are the number of anchor nodes, the
radio range, and the noisy factor of the link distances. As
Biswas, the ground-truth link distances d̄ij between neigh-
boring nodes i and j are perturbed with zero-mean unit-
variance Gaussian noise N (0,1) and the varying parameter
noise. So the link managers measure the noisy link distances
d̂ij = d̄ij ∗ (1 + N (0, 1) ∗ noise).

Fig. 5(a) illustrates a test network with three anchors, R =
0.25, and noise = 0.1. The anchors and sensors appear as
dark and light asterisks respectively, and the links as dark lines
between neighboring nodes. The network contains 225 links
for an average node connectivity of 7.9623. The distributed
location algorithm yields the estimated locations of the sensor
nodes upon convergence. The true and estimated locations
appear in Fig.5(b) as dark and light asterisks connected by
an error line. The average location error is 0.0597.

Biswas reports the results of a single trial network for the
six test conditions described in [2]. The quantative measure
for each test condition is the average location error over the
sensor nodes

1

nS

n∑

i=nA+1

||x̄i − xi||, (12)

where x̄i and xi denote the ground-truth and estimated loca-
tions. Our paper includes a more extensive superset of their
test conditions, spanning a much higher range of noise, for
a total of 38 tests. In addition, for each test we conduct ten
trials of randomly distributed sensor networks rather than one,
totaling 380 trials. The result for each test condition is reported
as the average over the ten trials. Table II contains the results
for 36 tests as the cross product of #anchor = {3, 5, 7},
R = {0.20, 0.25, 0.30}, and noise = {0.0, 0.1, 0.2, 0.3},
and two additional tests (7, 0.30, 0.05) and (7, 0.40, 0.1). The
average connectivity of the networks for three anchors is
5.4372 for R = 0.20, 7.7238 for R = 0.25, and 10.2477 for
R = 0.30. For each slot in the table, the average location error
of our distributed is reported on the top line, and if available,
the corresponding result in [2] is shown in parentheses on the
middle line in the same slot. Our algorithm delivers up to
three times better performance across all parameters. In fact
in the column for seven anchor nodes and R = 0.30, their
error 0.0640 for noise = 0.1 is still 39% greater than our
error 0.0459 for noise = 0.3; this shows that our algorithm
is much more robust to noise.

Our results presented here match up exactly with the results
from our centralized algorithm in [8], confirming that the dis-
tributed primal-dual algorithm indeed attains global optimality.
The bottom line of each slot in Table II displays the average
number of transmitted messages required for our distributed
algorithm to converge, including network organization, primal-
dual pivots, and location propagation. Observe the number of
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(a) Link distance estimation
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(b) Location reconstruction
Fig. 5. A test network with three anchor nodes, R=0.25, and noise = 0.1.

messages for network organization and location propagation
in the row for noise = 0.0; here all the triangles are initially
feasible, necessitating no primal-dual pivots. The primal-dual
messages increases from zero with increasing noise due to
the number of initially infeasible triangles, from a fraction
more for noise = 0.1 up to twice more for very high levels
of noise = 0.3 and R = 0.3. The messages also increases
with increasing radio range R due to the increased number
of triangles in the network, but also delivers better location
performance. Introducing more anchors in the network causes
a mild decrease in location propagation messages since more
anchor nodes can reach the same number of sensors.

VII. CONCLUSIONS AND FURTHER WORK

This paper proposes a distributed version of an algorithm
for sensor location described in our recent work. Drawing



R=0.20 R=0.25 R=0.30 R=0.4noise 3 5 7 3 5 7 3 5 7 7
0.0427 0.0419 0.0408 0.0067 0.0058 0.0058 < 1e−6 < 1e−6 < 1e−6

0.0 (0.0800) (0.0076) (1.8e−4)
377.2 369.5 366.0 433.4 421.6 412.3 484.1 475.1 462.8

0.0162
0.05 (0.0540)

577.6
0.0754 0.0644 0.0638 0.0526 0.0436 0.0270 0.0447 0.0362 0.0245 0.0114

0.1 (0.0640) (0.0500)
395.1 388.4 382.2 372.4 463.4 457.2 667.4 657.3 643.1 1368.2

0.0846 0.0801 0.0676 0.0764 0.0649 0.0493 0.0570 0.0566 0.0458
0.2

422.9 415.8 409.7 556.2 539.3 527.5 1051.2 1021.7 1015.5
0.1063 0.0877 0.0873 0.0954 0.0825 0.0772 0.0767 0.0736 0.0459

0.3
455.6 453.9 444.6 847.0 833.7 827.9 1405.4 1384.3 1373.1

TABLE II
NUMERICAL RESULTS FOR EXPERIMENTS

on previous approaches employing complex optimization, our
approach provides a tighter solution to the problem than its
competitors by applying triangle inequality geometrical con-
straints to the network. In order to substantiate its performance,
we run an extensive set of experiments in comparison with the
published results for the best competing algorithm. We report
the number of distributed messages for convergence of our
algorithm, and show that it delivers the exact same results as
the centralized version, and so too attains the optimal objective
function.

Supplementary work not included in the paper demonstrates
that our novel distributed algorithm reorganizes efficiently in
networks when the measured distances change over time, or
the original links break or new links are added.
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